Cortical Activation Through Passive-Motion Functional MRI.

نویسندگان

  • A F Choudhri
  • R M Patel
  • A Siddiqui
  • M T Whitehead
  • J W Wheless
چکیده

BACKGROUND AND PURPOSE Functional brain mapping is an important technique for neurosurgical planning, particularly for patients with tumors or epilepsy; however, mapping has traditionally involved invasive techniques. Existing noninvasive techniques require patient compliance and may not be suitable for young children. We performed a retrospective review of our experience with passive-motion functional MR imaging in anesthetized patients to determine the diagnostic yield of this technique. MATERIALS AND METHODS A retrospective review of patients undergoing passive-motion fMRI under general anesthesia at a single institution over a 2.5-year period was performed. Clinical records were evaluated to determine the indication for fMRI, the ability to detect cortical activation, and, if present, the location of cortical activation. RESULTS We identified 62 studies in 56 patients in this time period. The most common indication for fMRI was epilepsy/seizures. Passive-motion fMRI identified upper-extremity cortical activation in 105 of 119 (88%) limbs evaluated, of which 90 (86%) activations were in an orthotopic location. Lower-extremity cortical activation was identified in 86 of 118 (73%) limbs evaluated, of which 73 (85%) activations were in an orthotopic location. CONCLUSIONS Passive-motion fMRI was successful in identifying cortical activation in most of the patients. This tool can be implemented easily and can aid in surgical planning for children with tumors or candidates for epilepsy surgery, particularly those who may be too young to comply with existing noninvasive functional measures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas

Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...

متن کامل

Using functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas

Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...

متن کامل

Within-session and between-session reproducibility of cerebral sensorimotor activation: a test--retest effect evidenced with functional magnetic resonance imaging.

The aim of the current study was to assess the reproducibility of functional magnetic resonance imaging (fMRI) brain activation signals in a sensorimotor task in healthy subjects. Because random or systematic changes are likely to happen when movements are repeated over time, the authors searched for time-dependent changes in the fMRI signal intensity and the extent of activation within and bet...

متن کامل

Motor learning elicited by voluntary drive.

Motor training consisting of voluntary movements leads to performance improvements and results in characteristic reorganizational changes in the motor cortex. It has been proposed that repetition of passively elicited movements could also lead to improvements in motor performance. In this study, we compared behavioural gains, changes in functional MRI (fMRI) activation in the contralateral prim...

متن کامل

Comparison of functional MRI image realignment tools using a computer-generated phantom.

This study discusses the development of a computer-generated phantom to compare the effects of image realignment programs on functional MRI (fMRI) pixel activation. The phantom is a whole-head MRI volume with added random noise, activation, and motion. It allows simulation of realistic head motions with controlled areas of activation. Without motion, the phantom shows the effects of realignment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 36 9  شماره 

صفحات  -

تاریخ انتشار 2015